PRESS KIT

革新的衛星 技術実証3号機 Innovative Satellite Technology Demonstration-3

INNOVATIVE SATELLITES

RAISE-3 (LEOMI, SDRX, GEMINI, KIR, TMU-PPT, D-SAIL, HELIOS), KOYOH, PETREL, STARS-X, MAGNARO, MITSUBA, KOSEN-2, WASEDA-SAT-ZERO, FSI-SAT

Index

I	Innc	ovative Satellite Technology Demonstration Program	02					
	Pur	pose	02					
		utline of the Public Recruitment System						
	Previous Projects							
11	Innovative Satellite Technology Demonstration-3							
	Ou	,tline	03					
	1	RApid Innovative payload demonstration SatellitE-3 (RAISE-3)	04					
		Mission and Features of "RApid Innovative payload demonstration SatellitE-3	04					
		1-1 Satellite Systems	05					
		RAISE-3 Configuration	05					
		1-2 Main Characteristics	06					
		1-3 Configuration	07					
		1-4. Theme of on-orbit demonstration						
		01 Low Earth Orbit satellite MIMO for 920MHz band IoT platform "LEOMI"	08					
		02 Software Defined Receiver "SDRX"	08					
		03 cots GPU based Edge-computing for mission systems utilizing model based systems engineering "GEMINI"						
		04 Kakushin-3 water Ion-thruster and Resistojet-thruster "KIR"						
		05 Tokyo Metropolitan University Pulsed-Plasma Thruster "TMU-PPT"	09					
		 06 Membrane deployment deorbit mechanism "D-SAIL" 07 Harvesting Energy with Lightweight Integrated Origami Structure "HELIOS" 						
		1-5 Equipment that increases added value of mission						
		01 On Board Computer slice	11					
		1-6 Operation]]					
		1-7 RAISE-3 System Overview	12					
	2	Microsatellite [Theme of on-orbit demonstration]						
		01 KOYOH						
		 O2 Platform for Extra and Terrestrial Remote Examination with LCTF "PETREL" O3 Space Tethered Autonomous Robotic Satellite "STARS-X" 						
		Space reinered Autonomous Robolic Salellile STARS-A	14					
	3	CubeSat [Theme of on-orbit demonstration]						
		01 MAGnetically separating NAno-satellite with Rotation for Orbit control "MAGNARO"						
		02 MITSUBA	.0					
		03 KOSEN-2 04 WASEDA-SAT-ZERO						
		04 WASEDA-SAT-ZERO 05 FSI-SAT						
	Ini	novative Satellites	17					

Innovative Satellite Technology **Demonstration Program**

Purpose

This program is part of the basic plan for space policy to realize a comprehensive industrial base in outer space to provide opportunities to demonstrate equipment, parts, microsatellites and CubeSats developed by private companies, universities, research institutions, etc.

JAXA is aiming to realize the following through this program.

- [1] We will look forward to the future and demonstrate technologies and ideas that will lead to the creation of new uses and industrial competitive systems / subsystems while responding to the challenges of the country and industry.
- [2] Although the risk is high, we will preferentially take "innovative" technologies that are expected to achieve high results in the development of Japanese space technology and securing the international competitiveness of the space industry and demonstrate.

Outline of the Public Recruitment System

JAXA is offering proposals for "Innovative Satellite Technology Demonstration Program" throughout the year. For details of application conditions etc, please see the following website.

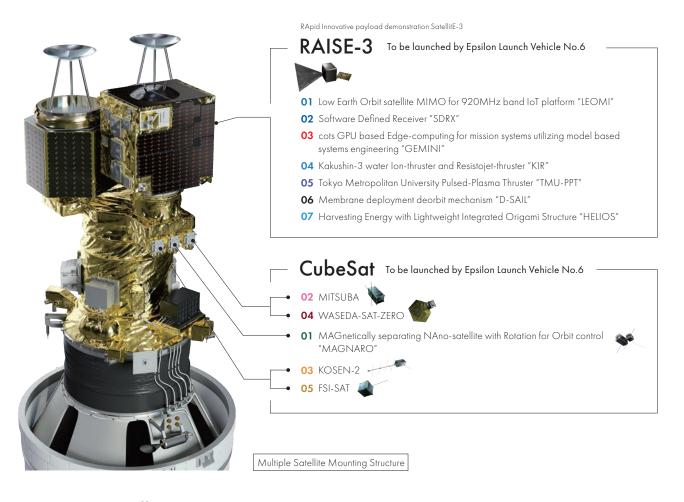
Innovative Satellite Technology Demonstration Program (Japanese only) https://www.kenkai.jaxa.jp/kakushin/index.html

Previous Projects

Innovative Satellite Technology Demonstration-1 (Japanese only)

Satellite Technology Demonstration-2

Innovative Satellite Technology Demonstration-2 (Japanese only)


Innovative Satellite Technology Demonstration-3

Outline

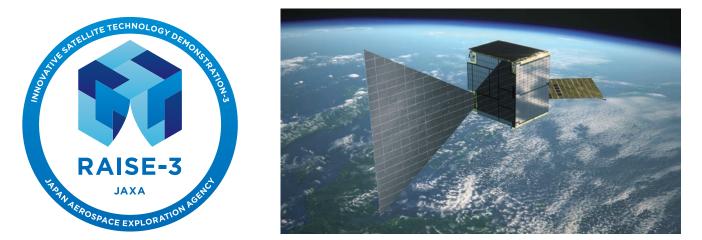
The "Innovative Satellite Technology Demonstration-3" is the third demonstration opportunity of the "Innovative Satellite Technology Demonstration Program" to publicly invite universities, research institutions, private companies, etc., equipped with 15 selected themes.

It consists of 9 satellites, "RApid Innovative payload demonstration SatellitE-3" developed by JAXA entrusted to Mitsubishi Heavy Industries, Ltd. (with 7 demonstration themes) and 8 microsatellites / CubeSats.

Microsatellite Launch vehicle is under adjusting

01 KOYOH

- 02 Platform for Extra and Terrestrial Remote Examination with LCTF "PETREL"
- 03 Space Tethered Autonomous Robotic Satellite "STARS-X"



ative Satellite Technology Demonstration

RApid Innovative payload demonstration SatellitE-3 (RAISE-3)

Mission and Features of

"RApid Innovative payload demonstration SatellitE-3 (RAISE-3)"

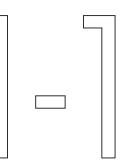
Mission

RAISE-3 (RApid Innovative payload demonstration SatellitE-3) is a satellite for seven on-orbit demonstration themes selected in the "Innovative Satellite Technology Demonstration Program". RAISE-3 will be operated at the request of the proposers of each theme and provide them with opportunity to demonstrate their essential parts and new innovative technologies on orbit.

Features

1. Low-cost and Short-term development

"Innovative Satellite Technology Demonstration Program" provides demonstration opportunities about once every two years, and the RAISE satellite is required to be developed in less than two years and at a low cost. On the other hand, the RAISE satellite needs to be reliable enough to acquire demonstration data from each device. Achieving both short-term, low-cost development and ensuring reliability are important development issues for the RAISE satellite. To challenge this development,


- RAISE-3 consists of almost flight-proven components and little modified components from flight-proven components to shorten the design and verification period, reduce development costs, and development risks.

- On-Board Computer (OBC) of RAISE-3, which is the key to satellite system control, has many small satellite heritages. This OBC is equipped with a highly radiation-resistant CPU, ensuring high reliability.

2. Development by MBSE

In the development of RAISE-3, MBSE (Model Based Systems Engineering) is attempted to improve the efficiency of satellite development through digital development.

MBSE is partially applied to environment construction, system modeling, design, traceability and review.

Satellite Systems

Integrated Satellite Control System

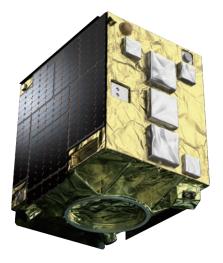
The Integrated Satellite Control (ICS) subsystem has the core functions of the satellite system such as data handling of telemetry commands, satellite management, and mission data processing. These ICS functions are provided by the On-Board Computer (OBC). RAISE-3 OBC is based on the flight-proven OBC and ensures reliability with main/slave-redundant configuration.

Communication System

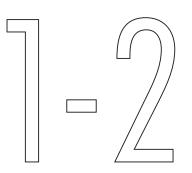
The communication subsystem consists of S-band and X-band. S-band is telemetry command lines for satellite control, and X-band is a telemetry downlink line that transmits experiment data of each theme, etc. from the satellite to the ground system. The S-band communication components are flight-proven with a redundant configuration to improve reliability. The X-band has sufficient downlink data rate to transmit the experiment data of all themes stored in the satellite system to the ground system.

Electrical Power System

The Electrical Power Subsystem generates, stores, and supplies the power required for demonstration theme components, satellite bus system components, and heaters.

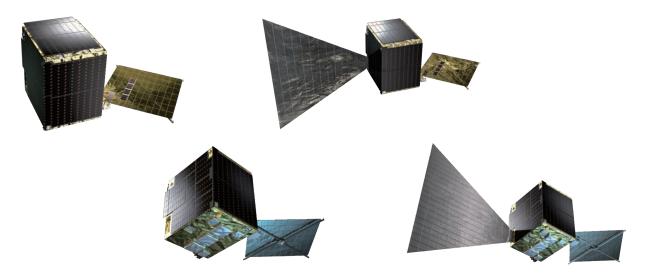

On RAISE-3, solar panels are attached to the four sides of the satellite, and in the sunlight, one or more solar panels continues to generate power enough to each experiment. Li-ion battery with high volumetric and mass efficiency is used to store electric power.

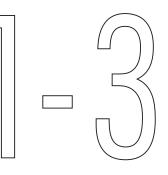
Attitude Control System


The Attitude Control Subsystem (ACS) controls the satellite attitude with the three-axis attitude control. ACS has an attitude change maneuver function which enables attitude control necessary for satellite operation and experiments of each demonstration theme.

If the ACS component fails partially, the remaining components enable to continue attitude control. That improves the robustness of the satellite system.

RAISE-3 Configuration





Main Characteristics

	Launch Vehicle	Epsilon Launch Vehicle
Launch	Launch Site	Uchinoura Space Center
	Launch Year	JFY 2022
	Sun-synchronous	orbit
Orbit	Altitude	560km
	Inclination	97.6 degree
	Local Sun Time at	Descending Node 9:30
	Box-shape with b	ody mounted solar array panels
Shape	Dimensions	1m × 0.8m × 1m (Payload Adapter Fitting not included)
Weight	110 kg	
Attitude Control	Three-axis contro	l (Earth-pointing, Sun-pointing, etc.)
Power	Solar Array	Average during sunlight BOL : > 250 W, EOL : > 230 W
rowei	Mission system	BOL : max105Wh, EOL : max62Wh
Mission Term	Initial Operation	1month and Nominal Operation 13 months

Configuration

Dimensions 1m × 0.8m × 1m (Payload Adapter Fitting not included) Weight 110kg

Low Earth Orbit satellite MIMO for 920MHz band IoT platform

04 KIR

Kakushin-3 water Ion-thruster and Resistojet-thruster

05 TMU-PPT

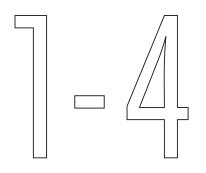
Tokyo Metropolitan University Pulsed-Plasma Thruster

06 D-SAIL

Membrane deployment deorbit mechanism

03 GEMINI

02 SDRX


Software Defined Receiver

cots GPU based Edge-computing for mission systems utilizing model based systems engineering

RApid Innovative payload demonstration SatellitE-3 (RAISE-3)

07 HELIOS Harvesting Energy with Lightweight Integrated Origami Structure

Theme of on-orbit demonstration

©Nippon Telegraph and Telephone Corporation

Theme name On-orbit demonstration of 920 MHz band IoT platform that uses satellite MIMO technology					
Proposing org	ganization	Nippon Telegraph and Teleph	one Corporc	ation	
Outline of mis	10	demonstrate a satellite MIMC	-		
	de ar	pectral efficiency of satellite lir emonstrates a satellite IoT platform ea and protocol-free IoT services e high-capacity downlink channel	n concept re 5 as a use co	alizing ultra-wide ase for expanding	
Dimensions	de ar th LEOMI-T LEOMI-L	emonstrates a satellite IoT platform ea and protocol-free IoT services	n concept re s as a use co by MIMO te	alizing ultra-wide ase for expanding	

Low Earth Orbit satellite MIMO for

02 Software Defined Receiver "SDRX"

Theme name	Softwa develoj	re-defined radio tha oment	t enables fle	xible satellite	
Proposing orgo	inization	NEC Space Tecl	NEC Space Technologies, Ltd.		
com well tech		omplex satellite syste ell as on-board re	ms in a shor ewrite/dyr ıtilizing dig	oping sophisticated and t time and at low cost, as namic reconfiguration ital data related to the	
Dimensions 150mm×15		50mm×150mm	Weight	1.4kg	
		Masaharu Tsuchiy NEC Space Techr		l.	

©NEC Space Technologies, Ltd.

© Mitsubishi Electric Corporation

cots GPU based Edge-computing for mission systems
utilizing model based systems engineering "GEMINI"

Theme name On-orbit evaluation and model-based development of a commercial GPU

Proposing organization Mitsubishi Electric Corporation						
Outline of mission	a consumer GPU capable of able high-speed signal processing generation processing. In addition, GPU will be model-based, aiming and improve quality.					
Dimensions	143mm×143mm×45mm	Weight 0.7kg				
Person responsible	for implementation Shinya Hiraku	ri Mitsubishi Electric Corporation				

Kakushin-3 water Ion-thruster and Resistojet-thruster "KIR"

Theme name	On-orbit demonstration of an ultra-compact integrated propulsion system that uses water as a propellant	C I R
Proposing organ	zation Pale Blue Inc.	00
Outline of missio	Aim to enhance competitiveness through on-orbit demonstration of an ultra-compact integrated propulsion system that integrates two types of propulsion systems, resist jet thrusters and ion thrusters using water as the propellant, into a single component.	Alf Street
Dimensions 12	3mm×123mm×90mm Weight 1.8kg	
Person responsib	e for implementation Jun Asakawa Pale Blue Inc.	YTAAN ASD

05

©Pale Blue Inc.

Theme name	On-orbit demonstration and performance evaluation of a pulsed plasma thruster (PPT) for small satellites
Proposing organ	ization Advanced Technology Institute, LLC
Outline of missic	To conduct an on-orbit demonstration and performance evaluation of an electric propulsion system that is low-power, compact, and low-cost as a propulsion system for nano-satellites and small satellites.
Dimensions 10	60mm×130mm×100mm Weight 1.4kg
Person responsib	le for implementation Mitsuteru Sugiki Advanced Technology Institute, LLC
Collaborators	Tokyo Metropolitan University, University of Yamanashi, Takahashi Denki Seisakusho Corp

Tokyo Metropolitan University

Pulsed-Plasma Thruster "TMU-PPT"

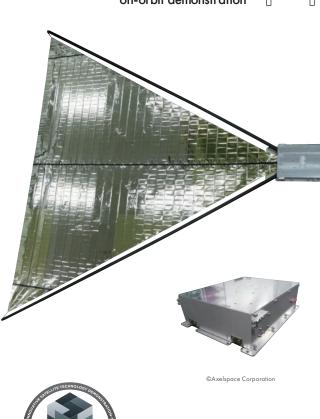
Microsatellite

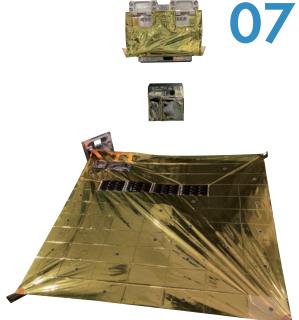
RApid Innovative payload demonstration SatellitE-3 (RAISE-3)

06 Membrane deployment deorbit mechanism "D-SAIL"

Theme name On-orbit demonstration of membrane deployment deorbit mechanism for microsatellites

Proposing organization Axelspace Corporation

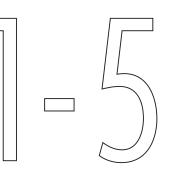

Outline of mission To further reduce the period of time that the satellite remains in orbit after the end of operations, the system of deorbit mechanisms will be validated. Dimensions 2249mm×2080mm×73mm (when deployed)


Weight 1.9kg

Person responsible forTomohiimplementationAxelsp

Tomohiro Kawamura Axelspace Corporation

Collaborators SAKASE ADTECH CO., LTD.



©SAKASE ADTECH CO., LTD.

Harvesting Energy with Lightweight Integrated
Origami Structure "HELIOS"

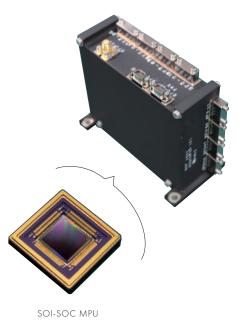
	Theme name		stration of a lightweight, membrane deployment with power generation and antenna functions ety 5.0
	Proposing organi	zation	SAKASE ADTECH CO., LTD.
	/ h res low a lig with		order to achieve high performance (high power igh capacity 5G communication / high olution observation by interferometry) of c-cost small satellites, on-orbit demonstration of ghtweight, high-delivery membrane structure in power generation and antenna functions will performed.
•	m	iembrane	x : 130mm×110mm×110mm structure (when deployed) : 1000mm×230mm
	Weight Set :	2.3kg	
	Person responsib implementation	le for	Yoshiharu Sakai SAKASE ADTECH CO., LTD.

Equipment that increases added value of mission

RAISE-3 is equipped with a component that increase added value of the mission.

On Board Computer slice

60mm×133mm×107mm

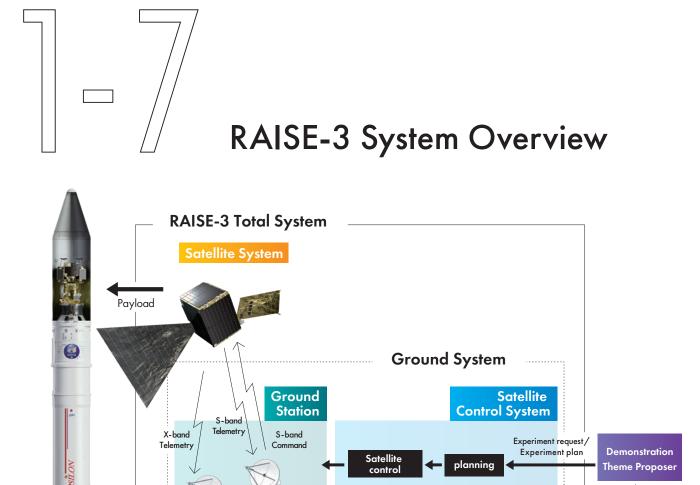

Outline

Dimensions

The OBC slice is integrated into the SDRX to generate a pseudo-modulated signal for evaluation of the software receiving part (Rx part). A high-performance, small and low-power SOI-SOC MPU is used to generate the pseudo-modulated signal. The MPU is being developed for space applications and its radiation tolerance and operating system (OS) will be evaluated using OBC slice. As radiation tolerance evaluation of the MPU, on-orbit data acquisition of radiation tolerance of the MPU internal memory and on-orbit evaluation of various IO and serial interface of the MPU are performed.

Weight

0.45kg


Each demonstration theme proposer makes an experiment request to the ground system via a web browser. In the ground system, based on the experiment request input and the experiment plan, satellite operation plan is created, and stored-command plan is generated.

The generated stored commands are uploaded to the satellite from the ground station, and the satellite conducts experiments on each demonstration theme according to the stored commands and accumulates the experimental data in the onboard data recorder.

Accumulated experimental data is transmitted from the satellite to the ground system using the X-band telemetry downlink line. The ground system sorts the acquired telemetry data for each demonstration theme, and then generates and stores them as data that can be distributed together with the satellite House Keeping data required for experimental data evaluation. The demonstration theme proposer acquires experimental data via a web browser.

As described above, the demonstration theme proposer can obtain the convenience of being able to input the experiment request and acquire the experiment data all via the WEB browser.

JAXA

Data

ocessing

storing

BU DAYA

S-band

X-band


RAISE-3 Flight Model

Epsilon Launch Vehicle

distribution

Experiment Data

[Theme of on-orbit demonstration]

Microsatellite

Launch vehicle is under adjusting

коуон

Theme name Development of a micro-satellite system for space science and engineering, and X-ray observation of gravitational wave sources

Proposing organiza	tion Kanazawa Ur			Contraction of the		
Outline of mission	and will identify the bursts and X-ray tro gravitational wave	DH, has a wide field X-ray monitor, e time and direction of gamma-ray ansient phenomena associated with radiation. It will share the observed und/space observatories in whole		ray vith ved		
Dimensions 493m	nm×450mm×488mm	Weight	43kg	No. Conception	AT A STORY OF TO STORY OF TO STORY	
Person responsible f	or implementation	Satoshi Yagita Kanazawa U			KOYOH KANAZAWA UNIVERSITY NART	

Collaborators

Team Umitsubame

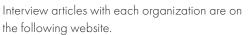
Platform for Extra and Terrestrial Remote Examination with LCTF "PETREL"

 Theme name
 Demonstration of multi-spectral ocean observation technology

 that uses an ultra-low cost high-accuracy attitude control bus system

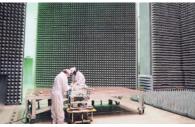
Tokyo Institute of Technology Proposing organization Outline of mission An innovative multispectral camera will be mounted on a low-cost but high-performance microsatellite. This project including mission operation and providing data application services is conducted by a quite unique academic-industrial consortium in which members contribute via their own professionalities free of charge. This project will open up a new space business utilizing spectral data, and a new research style of space science. 467mm×530mm×512mm Weight 62kg Dimensions Yoichi Yatsu Tokyo Institute of Technology Person responsible for implementation

13 | Innovative Satellite Technology Demonstration-3


O3 Space Tethered Autonomous Robotic Satellite "STARS-X"

Theme name Demonstration of space tether technology for debris capture							
Proposing organization Shizuoka University							
Outline of mission A tether is extended 1km in space, and a robot (climber) moves on the tether to conduct a debris capture experiment with a net.							
Dimensions 540mm×588mm×576n	nm Weight 60kg						
Person responsible for implementation	Masahiro Nohmi Shizuoka University						

Interview People involved in "Innovative Satellite Technology Demonstration-3"



(Japanese only)

©Advanced Technology Institute, LLC

©Kanazawa University

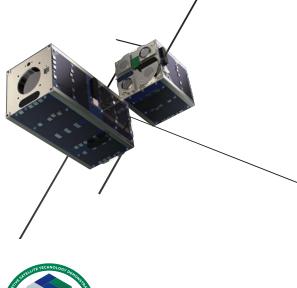
[Theme of on-orbit demonstration]

CubeSat

To be launched by Epsilon Launch Vehicle No.6

Proposing organization

MAGnetically separating NAno-satellite with Rotation for Orbit control "MAGNARO"


Theme name Rotation and separation of microsatellites to deploy their constellation

Nagoya University

Outline of mission We aim to establish a method to achieve resource saving, high accuracy, and formation by rotating and separating connected nano-satellites to form a formation, and to achieve multi-point simultaneous observation and continuous earth observation with nano-satellites. 111mm×111mm×340mm Dimensions Weight 4.4kg

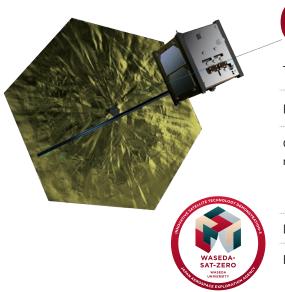
Person responsible for implementation

Takaya Inamori Nagoya University

MITSUBA

Theme name	On-orbit demonstration aimed at expanding space application of commercial semiconductor devices and general-purpose equipment				
Proposing orgar	iization Kyushu Institute	e of Technology			
Outline of missic	adding value to CC	On-orbit degradation observation of COTS semi conductor for adding value to COTS data base and On orbit demonstration of general USB device.			
Dimensions	105mm×100mm×227mm	Weight	1.7kg		
Person responsible for implementation		Hirokazu Masu Kyushu Institute	- · · ·		

CubeSat


e Satellite Technology Demonstration Program

03 козен-2

Theme name

ame Demonstration of technology for a marine observation data collection satellite equipped with a directional antenna with ultra-high precision attitude control; Sustainable space engineer development; and Demonstration of a network-based satellite development scheme

Proposing or	ganization	National Instit	ute of Technol	ogy (KOSEN), Y	onago Colleg	je	and h	
Outline of mission	combinin high-prec cameras	ect will collect ob g a LPWA (LoRa) i ision attitude contr and magnetic sens data collection pr	receiver and c ol using a dua sors, and dem	a directional ant l reaction wheel onstrate satellite	enna, demons that integrates communicatic	trate the fish-eye		
Dimensions]]]mm×	111mm×227mm	Weight	2.7kg			Ň.	
Person respo implementati		Masahiro Tokum National Institute		y (KOSEN), Yon	ago College			ASTRATION'S
Collaborato	r s Natio	onal Institute of Tec	hnology (KOS	SEN), Gunma Co	ollege		KOSEN-2 NATIONAL INSTITUTE OF TECHNOLOGY	(enci

04 waseda-sat-zero

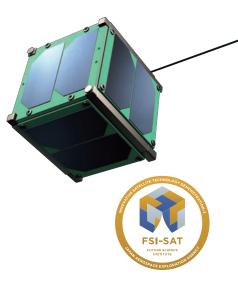
Theme name Demonstration of integral molding technology for satellite housing

Proposing c	rganization Waseda University				
Outline of mission	Aiming for zero screws, zero mechanical parts, and zero debris by using 3D printer technology to mold the satellite chassis in one piece. Using this satellite chassis, we will conduct deployment experiments of a membrane surface composed of flat elements (like origami).				
Dimensions	113mm×113mm×113mm Weight 1.2kg				
Person responsible for implementation Tomoyuki Miyashita					

Tomoyuki Miyashita Waseda University

05 FSI-SAT

Theme name Demonstration of technology for a multi-spectral camera for CubeSat


Proposing organization Future Science Institute

Outline of
missionA 1U size multispectral camera including data processing system will
be developed at low cost to demonstrate basic operation in orbit.

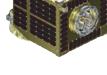
Dimensions 110mm×110mm×113mm

Weight 1.4kg

RApid Innovative payload

demonstration Satellite-1

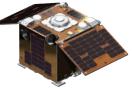
RAPIS-1


JAXA

Innovative Satellite Technology Demonstration-2

Variable Shape Attitude Control Demonstration Microsatellite HIBARI Tokyo institute of Technology

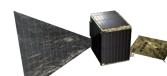
The multi wavelength infrared observation microsatellite Z-Sat Mitsubishi Heavy Industries, Ltd.


Man-made meteor shower Demonstration Satellite ALE-1 ALE Co. Ltd.

Innovative Satellites

Innovative Satellite Technology Demonstration-1

MicroDragon Keio University


Rapid International Scientific Experiment Satellite RISESAT Tohoku University

Debris Removal Unprecedented Micro-Satellite DRUMS Kawasaki Heavy Industries, Ltd.

Innovative Satellite Technology Demonstration-3

RApid Innovative payload demonstration SatellitE-3 RAISE-3 JAXA

коуон Kanazawa University

Platform for Extra and Terrestrial Remote Examination with LCTF PETREL Tokyo Institute of Technology

Space Tethered Autonomous Robotic Satellite STARS-X Shizuoka University

Innovative Satellite Technology Demonstration-4 — Coming soon!

MAGnetically separating NAno-satellite with Rotation for Orbit control MAGNARO Nagoya University

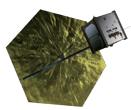
TeikyoSat-4 Teikyo University

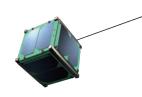
Advanced Satellite Toward Exploration of dust enviRonment with In-Situ Cosmic dust sensor **ASTERISC**

Chiba Institute of Technology

AGU Remote Innovative CubeSat Alert System **ARICA** Aoyama Gakuin University

Advanced OBC of **NanoDragon** Meisei Electric Co. Ltd.


KOSEN-1 National Institute of Technology, Kochi College


MITSUBA Kyushu Institute of Technology

KOSEN-2 National Institute of Technology, Yonago College

WASEDA-SAT-ZERO Waseda University

FSI-SAT Future Science Institute

ÎÎ

EPSILON .

.

•

JAXA (English)

革新的衛星技術実証3号機 Innovative Satellite Technology Demonstration-3 (Japanese only)

国立研究開発法人宇宙航空研究開発機構 研究開発部門

〒305-8505 茨城県つくば市千現 2-1-1

Japan Aerospace Exploration Agency Research and Development Directorate 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505 Japan

リサイクル適性(A) この印刷物は、印刷用の紙へ リサイクルできます。